\(\int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [99]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 128 \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {(a-2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 \sqrt {a-b} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

[Out]

1/2*(a-2*b)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f/(a-b)^(1/2)+arctanh(b^(1/2)*tan(f*x+e)/(
a+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*cos(f*x+e)*sin(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)/f

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3744, 478, 537, 223, 212, 385, 209} \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {(a-2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f \sqrt {a-b}}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\sin (e+f x) \cos (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

[In]

Int[Sin[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

((a - 2*b)*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*Sqrt[a - b]*f) + (Sqrt[b]*ArcTanh
[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f - (Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2]
)/(2*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^2 \sqrt {a+b x^2}}{\left (1+x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {\text {Subst}\left (\int \frac {a+2 b x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-2 b) \text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-2 b) \text {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f} \\ & = \frac {(a-2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 \sqrt {a-b} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 4.36 (sec) , antiderivative size = 273, normalized size of antiderivative = 2.13 \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\left ((a-b) (a+b+(a-b) \cos (2 (e+f x)))+\sqrt {2} a (-a+b) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )+\sqrt {2} a (a-2 b) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )\right ) \sec ^2(e+f x) \sin (2 (e+f x))}{4 \sqrt {2} (a-b) f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}} \]

[In]

Integrate[Sin[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-1/4*(((a - b)*(a + b + (a - b)*Cos[2*(e + f*x)]) + Sqrt[2]*a*(-a + b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)]
)*Csc[e + f*x]^2)/b]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]
 + Sqrt[2]*a*(a - 2*b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*EllipticPi[-(b/(a - b)), Ar
cSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])*Sec[e + f*x]^2*Sin[2*(e + f*x)]
)/(Sqrt[2]*(a - b)*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(369\) vs. \(2(110)=220\).

Time = 5.08 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.89

method result size
default \(\frac {\left (-\sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \cos \left (f x +e \right ) \sin \left (f x +e \right )+2 \sqrt {b}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {b}}\right ) \sqrt {a -b}-\sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right )-\arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a +2 \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) b \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}\, \cos \left (f x +e \right )}{2 f \sqrt {a -b}\, \left (\cos \left (f x +e \right )+1\right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(370\)

[In]

int(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f/(a-b)^(1/2)*(-(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*sin(f*x+
e)+2*b^(1/2)*arctanh(1/b^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)
))*(a-b)^(1/2)-(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)-arctan(1/(a-b
)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*a+2*arctan(1/(a-b)^(
1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*b)*(a+b*tan(f*x+e)^2)^(
1/2)*cos(f*x+e)/(cos(f*x+e)+1)/((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (110) = 220\).

Time = 0.85 (sec) , antiderivative size = 1847, normalized size of antiderivative = 14.43 \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(8*(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - (a - 2*b)*sqrt
(-a + b)*log(128*(a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 -
 7*a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 - 72*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4
 - 32*a^3*b + 160*a^2*b^2 - 256*a*b^3 + 128*b^4 - 32*(a^4 - 11*a^3*b + 34*a^2*b^2 - 40*a*b^3 + 16*b^4)*cos(f*x
 + e)^2 - 8*(16*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^7 - 24*(a^3 - 4*a^2*b + 5*a*b^2 - 2*b^3)*cos(f*x
+ e)^5 + 2*(5*a^3 - 29*a^2*b + 48*a*b^2 - 24*b^3)*cos(f*x + e)^3 - (a^3 - 10*a^2*b + 24*a*b^2 - 16*b^3)*cos(f*
x + e))*sqrt(-a + b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 4*(a - b)*sqrt(b)*log((
(a^2 - 8*a*b + 8*b^2)*cos(f*x + e)^4 + 8*(a*b - 2*b^2)*cos(f*x + e)^2 + 4*((a - 2*b)*cos(f*x + e)^3 + 2*b*cos(
f*x + e))*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/((a
 - b)*f), -1/16*(8*(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + 8*(a
- b)*sqrt(-b)*arctan(1/2*((a - 2*b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2)/(((a*b - b^2)*cos(f*x + e)^2 + b^2)*sin(f*x + e))) - (a - 2*b)*sqrt(-a + b)*log(128*(a^4 -
 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 - 7*a*b^3 + 2*b^4)*cos(f
*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 - 72*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 - 32*a^3*b + 160*a^2*b
^2 - 256*a*b^3 + 128*b^4 - 32*(a^4 - 11*a^3*b + 34*a^2*b^2 - 40*a*b^3 + 16*b^4)*cos(f*x + e)^2 - 8*(16*(a^3 -
3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^7 - 24*(a^3 - 4*a^2*b + 5*a*b^2 - 2*b^3)*cos(f*x + e)^5 + 2*(5*a^3 - 29*
a^2*b + 48*a*b^2 - 24*b^3)*cos(f*x + e)^3 - (a^3 - 10*a^2*b + 24*a*b^2 - 16*b^3)*cos(f*x + e))*sqrt(-a + b)*sq
rt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/((a - b)*f), -1/8*(4*(a - b)*sqrt(((a - b)*cos(
f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - sqrt(a - b)*(a - 2*b)*arctan(-1/4*(8*(a^2 - 2*a*b
+ b^2)*cos(f*x + e)^5 - 8*(a^2 - 3*a*b + 2*b^2)*cos(f*x + e)^3 + (a^2 - 8*a*b + 8*b^2)*cos(f*x + e))*sqrt(a -
b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^4 - a^2*
b + 3*a*b^2 - 2*b^3 - (a^3 - 6*a^2*b + 9*a*b^2 - 4*b^3)*cos(f*x + e)^2)*sin(f*x + e))) - 2*(a - b)*sqrt(b)*log
(((a^2 - 8*a*b + 8*b^2)*cos(f*x + e)^4 + 8*(a*b - 2*b^2)*cos(f*x + e)^2 + 4*((a - 2*b)*cos(f*x + e)^3 + 2*b*co
s(f*x + e))*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(
(a - b)*f), -1/8*(4*(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - sqrt
(a - b)*(a - 2*b)*arctan(-1/4*(8*(a^2 - 2*a*b + b^2)*cos(f*x + e)^5 - 8*(a^2 - 3*a*b + 2*b^2)*cos(f*x + e)^3 +
 (a^2 - 8*a*b + 8*b^2)*cos(f*x + e))*sqrt(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*(a^3 -
3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^4 - a^2*b + 3*a*b^2 - 2*b^3 - (a^3 - 6*a^2*b + 9*a*b^2 - 4*b^3)*cos(f*x
+ e)^2)*sin(f*x + e))) + 4*(a - b)*sqrt(-b)*arctan(1/2*((a - 2*b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*
sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(((a*b - b^2)*cos(f*x + e)^2 + b^2)*sin(f*x + e))))/((a - b)
*f)]

Sympy [F]

\[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \sin ^{2}{\left (e + f x \right )}\, dx \]

[In]

integrate(sin(f*x+e)**2*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*sin(e + f*x)**2, x)

Maxima [F]

\[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*sin(f*x + e)^2, x)

Giac [F]

\[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*sin(f*x + e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int {\sin \left (e+f\,x\right )}^2\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a} \,d x \]

[In]

int(sin(e + f*x)^2*(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

int(sin(e + f*x)^2*(a + b*tan(e + f*x)^2)^(1/2), x)